
System Architecture
User Interface

Application and Domain Layer
Infrastructure

Web Anwendungen Entwickeln
mit

– JSF, Spring und Tomcat –

Rainer Schuler

Ulm, AOI-Systeme
Schulung, Beratung, Entwicklung

Januar 2011

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Übersicht

1 System Architecture

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Übersicht

1 System Architecture

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Übersicht

1 System Architecture

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Übersicht

1 System Architecture

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Übersicht

1 System Architecture
Domain Driven Design
Two Tier Architecture
Inversion of Control

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Domain Driven Design

Necessary aspects of the domain are described by a model which
can be used to solve the tasks (business logic, services) related to
the domain.

Building Blocks

Entity, an object with an indentity (e.g. seat in a concert hall)
Value Object, object with attributes (e.g. dollar bill)
Aggregate, aggregate root (e.g. house)
Service, operations not belonging to an object
Repository, specialized repository objects retrieve the domain
objects
Factory, factory objects create domain objects

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Application Architecture

A typical enterprise application architecture consists of the
following four conceptual layers:

1 User Interface (Presentation Layer): Responsible for presenting
information to the user and interpreting user commands.

2 Application Layer: Coordinates the application activity. It holds
the state (progress) of the application tasks.

3 Domain Layer: This layer contains information about the
business domain. The business objects are held here.

4 Infrastructure Layer: This layer acts as a supporting library for
all the other layers. It provides communication between layers.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Application and Domain

Application Layer

It holds the state of the services (application tasks).
It does not hold the state of business objects
Business logic is delegated to the domain layer.

Domain Layer
Implements business logic.
The save, retrieve or modify operations of the business objects
are delegated to the infrastructure layer.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

User Interface and Infrastructure

User Interface
Displays and updates (domain) Value Objects.
User requests are delegated to the application layer.

Infrastructure
The repository layer retrives business objects from the entities
(DAOs) stored in a database.
It does the object relational mapping of the DAOs to tables
(of a relational database).
It stores tables in a (relational) database (MySQL, HSQLDB).

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Two Tier Architecture

Container
A container is a selfcontained piece of software which is run
independently of the application. We will be (explicitly) using two
container in our application.

1 Tomcat, running the application (using JSF/Facelets).
2 Spring, running the database (using Hibernate) and access

control (using spring-security).

Resources are registered/injcected using descriptions in
xml-files and/or by annotations in the Java-classes.
The application can request/supply resources held by the
container.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Tomcat container
A page request (or PPR) is delegated to a servlet deployed with the
application. The servlet has access to the reources of the container
(external context).

External context
A Java class (Bean) exposes its constructor (methods, fields) to the
container. On request an instance of the class is created, requested
resources are injected, and the class is put into the context.

application-context: only one instance.
session-context: one instance for each (user-) session.
request scoped: one (stateless) instance for each request.

A Bean is a Java-class following certain conventions about method naming,
construction, and behavior, i.e., it is serializable, it has a default constructor,
and its properties have getters and setters.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Spring container

Resources (Beans) and are created and held in an application
context (as singletons or prototype).

Context
Spring context can be described in the deployment descriptor
(deployed with the application) or as XmlApplicationContext
(build during run-time).
Spring is able to auto scan, detect and instantiate
(application) beans or components.
Resources (Beans, Java-classes) are accessable through
Dependency Injection.
The application (Java-class, Bean) can access resources via
Bean reference to pre-defined (elsewhere) instances.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Spring container

We will be using two spring modules.

Spring Core/ORM

Spring allows you to define and inject resources like a JDBC
Data-Source, a Hibernate Session-Factory, data access objects
(DAOs), and bussines objects.

Spring Security

Page request are passed through a security filter (web.xml).
Non authorized page request are redirected to a login page.
Remember-me button allows long-time authentication.
Allows password encryption and database (MySQL) usage.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Inversion of Control
Replace instantiation with dependency injection!

Instantiation
public StockBoImpl() {

this.stockDao = new StockDaoImpl();
}

Injection (using the interface StockDao!)
@Autowired
public StockBoImpl(StockDao stockDao) {
this.stockDao = stockDao;
}

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain Driven Design
Two Tier Architecture
Inversion of Control

Init application context and use bean reference!
Init context (spring) in a managed bean (tomcat)
@ManagedBean(name = "applicationService")
@ApplicationScoped
public class AppBookcase implements Serializable {

ApplicationContext appContext;
public AppBookcase() {

appContext = new ClassPathXmlApplicationContext(
"/config/BeanLocations.xml");

}
.......
public ApplicationContext getAppContext() {

return appContext;
}

}

Use bean reference
@ManagedBean
@SessionScoped
public class ViewBean {

@ManagedProperty(value = "#{applicationService}")
private AppBookcase application;

public void setApplication(AppBookcase application) {
this.application = application;

......
StockBo stockBo =

application.getAppContext().getBean(StockBO);
.....
}

}

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Übersicht

1 System Architecture

2 User Interface
JSF
Facelets
Backing Beans

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

User Interface
We use JSF to implement the Web-pages of the User Interface.

Web-page description
1 Describe the elements of the page, i.e. what is to be displayed.
2 Describe the view of each element, i.e. how it is displayed

(rendered).
3 Describe the value of the fields and the actions.

Elements are JSF-tags defined in the tag libraries.
The view of each tag is defined in the implementation of the
tag library and can be customized using skins and/or css-styles.
The value of the elements is defined in Backing-Beans
(Java-classes).

The same page can be used in different places, e.g, a page to
request address details can be used in serveral places.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Java Server Faces

JSF Lifecycle
The JSF lifecycle
does (the plumbing)
data transfer
between web-pages
and backing beans
invokes actions
(flow of control)
and listeners
(events).

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Extending JSF

The standard JSF component libraries (core and html, prefixes f:
and h: resp.) are part of the standard JSF implementations. Further
component libraries and implemtations can be added (myfaces
tomahawk, trinidad, primefaces, prefixes t: tr: and p:).

Configuration

JSF components can be configured (attributes, skins/themes,
css-styles).
JFS components use partial page requests (PPR) and have
attributes to call custom Javascript or AJAX functions.

See for example the primefaces showcase at
http://www.primefaces.org/showcase/ui/home.jsf

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

JSF components
It is possible to develop custom components.

Moving parts, artefacts
UIComponent Class, the computational aspect implementing
the logic of the component.
Render Class, the view aspect (rendering), which generates
HTML to be displayed in the browser.
UI Component Tag Class, the tag handler class
Tag Library Descriptor File, associates tag handler with usable
tag

It is possible to build JSF components using widgets from Web 2.0
libraries such as Dojo. See
http://www.ibm.com/developerworks/web/library/wa-aj-jsfdojo/index.html

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Example JSF page
<h:form id="stockform">

<p:fieldset legend="Available Stocks" appendToBody="false">
<p:dataTable id="stocktable" var="stock" value="#{viewBeanStockEdit.stocks}"

styleClass="topDataTable" >
<p:column filterBy="#{stock.stockCode}">

<f:facet name="header">
<h:outputText value="Code" />

</f:facet>
<h:outputText value="#{stock.stockCode}" />

</p:column>
<p:column>

<f:facet name="header">
<h:outputText value="Name" />

</f:facet>
<h:outputText value="#{stock.stockName}" />

</p:column>
<p:column style="width:32px">

<p:commandButton oncomplete="dialog.show()"
image="ui-icon ui-icon-search" update="stockform:display">
<f:setPropertyActionListener value="#{stock}"

target="#{viewBeanStockEdit.editStockListener}" />
</p:commandButton>

</p:column>
</p:dataTable>
<p:commandButton value="AddRow"

actionListener="#{viewBeanStockEdit.addStock}" update="display"
oncomplete="dialog.show()" >

</p:commandButton>
</p:fieldset>

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

<p:dialog header="Stock Details" widgetVar="dialog" showEffect="fold"
hideEffect="fold" modal="false" >
<h:panelGrid columns="2" cellpadding="5" id="display">

<h:panelGroup>
<h:outputText value="Stock Code: " />
<h:message for="inputTextStockName"></h:message>

</h:panelGroup>
<h:inputText value="#{viewBeanStockEdit.selectedStock.stockCode}" id="inputTextStockName"

validator="#{viewBeanStockEdit.validateStockCode}"
required="#{param[’requireStockValidation’]==’1’}" requiredMessage="value required" />

<h:panelGroup >
<h:outputText value="Stock Name: " />
<h:message for="inputTextStockCode" styleClass="color:red;"></h:message>

</h:panelGroup>
<h:inputText value="#{viewBeanStockEdit.selectedStock.stockName}" id="inputTextStockCode"

validator="#{viewBeanStockEdit.validateStockName}"
required="#{param[’requireStockValidation’]==’1’}" requiredMessage="value required" />

<p:commandButton value="Save"
actionListener="#{viewBeanStockEdit.saveStock}" update="display stocktable">
<f:param name="requireStockValidation" value="1"></f:param>

</p:commandButton>
<p:commandButton value="Delete" actionListener="#{viewBeanStockEdit.deleteStock}"

update="display stocktable" disabled="#{!viewBeanStockEdit.editStock}">
</p:commandButton>

</h:panelGrid>
</p:dialog>

</h:form>

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Facelets

Facelets
Facelets is the view declaration language (view-handler) for Java
server faces (Java EE).

Facelets converts HTML elements (with jsfc attribute) into the
corresponding JSF components.
Facelets builds the JSF component tree as defined by the view
of a JSF application.
Facelets supports the JSF UI components (templates).

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Templating with UIComponents
A Web-page partitions the screen in logical regions (navigation,
content, header, footer). A template defines the regions and
includes contents from other files.
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets">
<head>

<title><ui:insert name="title">Default title</ui:insert></title>
<link rel="stylesheet" type="text/css" href="#{request.contextPath}/css/pageLayout.css"/>

</head>
<body>
<div id="header">

<ui:insert name="header">
<ui:param name="headerBean" value="#{applicationBean.header}" />
<ui:include src="/WEB-INF/template/header.xhtml"/>

</ui:insert>
</div>
........

<div id="content" >
<ui:insert name="content">

Content defined in the templating file comes here!
</ui:insert>

</div>
........

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Templating with UIComponents

Files included by a template use the ui:component tag. Everything
outside will be ignored. Parameters can be passed in from the
template.

<ui:component
xmlns="http://www.w3.org/1999/xhtml"
xmlns:p="http://primefaces.prime.com.tr/ui"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">
<h:panelGroup id="infoPanel" layout="block" style="clear: both; padding: 20px;">

<p:menubar>
<p:submenu label="New" url="#{viewBean.newURL}"/>
<p:submenu label="Edit" url="#{viewBean.editURL}"/>
<p:submenu label="Delete" url="#{viewBean.deleteURL}"/>
<p:submenu label="Properties" url="#{viewBean.propertiesURL}"/>

</p:menubar>
</h:panelGroup>

</ui:component>

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Templating with UIComponents

A templating page defines the content of (named) regions and
passes parameters to the template. Eveything outside
ui:composition tag will be ignored.
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/WEB-INF/path/to/templateApp.xhtml">
<ui:param name="applicationBean" value="#{BMCApplicationBean}" />
<ui:define name="title">BMC Distribution</ui:define>
<ui:define name="content">

<!-- use the form tag and define your page-->
<h:form id="contentForm">

This will be visible!
</h:form>

</ui:define>
</ui:composition>
</html>

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Backing Beans

The dynamic content of the web-page (JSF-components) is taken
from so called Backing Beans (other content is taken from resource
files). For a Web-page, e.g. bookSearch.xhtml we use two
Java-classes.

ViewBean and Controller classes
BookSearchViewBean.java to access data values (domain).
BookSearchController.java to access values concerning the
application process status.

In general, a viewBean can be seen as interface to information held
in the business objects (domian layer) whereas the
Controller(-Bean) is the interface to the process application status
(application layer).

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

JSF
Facelets
Backing Beans

Backing Beans

In a typical application
Backing-Beans are stateful, i.e. defined in session scope.
Page request (navigation) are handled in the Controller Bean.
Process validation (e.g. data consistency on page entry or page
leave) are done in the Controller Bean.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Übersicht

1 System Architecture

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Application Layer

The Application (process) as hierarchical structure

The application consists of processes.
Each process consists of process steps.
Each process step corresponds to a Web-page (Dialog, Portlet)

Processes are independent from each other, i.e., it is possible
to navigate from one process to another.
Process-steps are sequential, i.e. it is not possible to leave or
enter a step in a non-consistent state.

A process tries to model a (business) service. A process step is a
means to display or gather information to and from the user.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Domain

The Domain Layer implements a model of the domain and services
to solve the tasks. Usually we distinguish

The Data model (database) which represents the domain
knowlegde.
The Services which implement the manipulation of the data.

Sevices are called from the application layer. Data is displayed (and
modified) in the User Interface. Business Objects implemented in
the infrastructure are used to persist data.

Decouple Layers
Dependency injection and bean reference allows to decouple the
layers.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Übersicht

1 System Architecture

2 User Interface

3 Application and Domain Layer

4 Infrastructure

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

Infrastructure
Repository Layer

Implements the API, i.e. implements the Business Objects
(BOs) which persist the domain objects (of the domain layer).
The implementation of the Business Objects aggregates the
domain objects from (simpler) Data Acess Objects (DAOs).

The DAOs are mapped to database tables which in turn are stored
in a database. Spring allows us to configure the mapping and the
database.

Mapping is done using Hibernate.
Tables are stored in HSQLDB and MySQL databases.

Web-sevices, access to e.g. the enterprise service bus and interfaces
to other (legacy) systems are also implemented in the infrastructure
layer.

Rainer Schuler Web Anwendungen

System Architecture
User Interface

Application and Domain Layer
Infrastructure

References

The Java EE 6 Tutorial
http://download.oracle.com/javaee/6/tutorial/doc/

The Hibernate reference documentation
http://www.hibernate.org/docs

Spring Framework
http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html

Spring Security
http://static.springsource.org/spring-security/site/reference.html

An Introduction to Domain Driven Design, D. Haywood
http://www.methodsandtools.com/archive/archive.php?id=97

Rainer Schuler Web Anwendungen

	System Architecture
	Domain Driven Design
	Two Tier Architecture
	Inversion of Control

	User Interface
	JSF
	Facelets
	Backing Beans

	Application and Domain Layer
	Infrastructure

